Search results for "Kelvin probe force microscopy"
showing 5 items of 5 documents
Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices
2018
In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference s…
Strain relaxation, extended defects and doping effects in InxGa1-xN/GaN heterostructures investigated by surface photovoltage
2020
Abstract We have analysed electrical properties of extended defects and interfaces in fully strained and partially relaxed InxGa1-xN/GaN heterostructures by means of Kelvin probe force microscopy and surface photovoltage spectroscopy. The study highlights the role of indium incorporation and Si doping levels on the charge state of extended defects including threading dislocations, V defects and misfit dislocations. Surface potential maps reveal that these defects are associated with a different local work function and thus could remarkably alter electron-hole recombination mechanisms of InxGa1-xN/GaN layers locally. Surface photovoltage spectra clearly demonstrate the role of misfit disloca…
Surface properties of AlInGaN/GaN heterostructure
2016
Abstract Surface structural, electronic and electrical properties of the quaternary alloy AlInGaN/GaN heterostructures are investigated. Surface termination, atomic arrangement, electronic and electrical properties of the (0001) surface and (10–11) V-defect facets have been experimentally analyzed using various surface sensitive techniques including spectroscopy and microscopy. Moreover, the effect of sub-band gap (of the barrier layer) illumination on contact potential difference (VCPD) and the role of oxygen chemisorption have been studied.
The weight function for charges - A rigorous theoretical concept for Kelvin probe force microscopy
2016
A comprehensive discussion of the physical origins of Kelvin probe force microscopy (KPFM) signals for charged systems is given. We extend the existing descriptions by including the openloop operation mode, which is relevant when performing KPFM in electrolyte solutions. We define the contribution of charges to the KPFM signal by a weight function, which depends on the electric potential and on the capacitance of the tip-sample system. We analyze the sign as well as the lateral decay of this weight function for different sample types, namely, conductive samples as well as dielectric samples with permittivities both larger and smaller than the permittivity of the surrounding medium. Dependin…
Direct Visualization of Molecule Deprotonation on an Insulating Surface
2012
Elucidating molecular-scale details of basic reaction steps on surfaces is decisive for a fundamental understanding of molecular reactivity within many fields, including catalysis and on-surface synthesis. Here, the deprotonation of 2,5-dihydroxybenzoic acid (DHBA) deposited onto calcite (101;4) held at room temperature is followed in situ by noncontact atomic force microscopy. After deposition, the molecules form two coexisting phases, a transient striped phase and a stable dense phase. A detailed analysis of high-resolution noncontact atomic force microscopy images indicates the transient striped phase being a bulk-like phase, which requires hydrogen bonds between the carboxylic acid moie…